ORIGINAL ARTICLE

An evidence-based assessment of CPR knowledge among healthcare providers in Saudi Arabia

Abdulelah Abualfraj^{1,2,3}* , Ahmed Halawani⁴, Ali Alshehri^{1,2,3,5}, Reema Hakim^{2,3,6,7}, Anas Hamam⁸

ABSTRACT

Background: Cardiopulmonary resuscitation (CPR) skills are simple and can be mastered easily. Knowledge about these interventions and their potential benefits can aid resuscitative efforts and improve survival. These facts mandate that all healthcare providers, irrespective of their specialty, level of training, or work setting, be competent in initiating and performing CPR.

Aim: To assess the level of knowledge of healthcare providers about which CPR modalities, interventions, and medications for nontraumatic cardiac arrest have been proven beneficial in terms of return of spontaneous circulation, intact neurological function, and mortality.

Methods: This was a cross-sectional study. A standardized electronic questionnaire was formed based on a literature review to assess the knowledge of healthcare providers working in Saudi Arabia about CPR interventions and medications. Responses of the participants were collected via Google Forms and SurveyMonkey. The data were analyzed in Statistical Package for the Social Science V27 to answer the questions of interest.

Results: Only 16% of the participants had good knowledge (score >80%) of which CPR modalities have benefit. Physicians ranked the highest, followed by technicians, while nurses and emergency medical services professionals ranked the lowest among the study participants. Being certified in life support courses was not associated with a higher level of knowledge.

Conclusion: The overall level of knowledge of healthcare providers of different CPR modalities was average (score = 60%-80%) which is below expectation. Efforts should be made to improve this knowledge among healthcare providers to understand which modalities benefit patients in cardiopulmonary arrest better.

Keywords: Cardiac arrest, cardiopulmonary resuscitation, epinephrine, emergencies, life support, survival, prognosis.

Background

Cardiopulmonary resuscitation (CPR) skills are simple and can be mastered easily. Published literature has demonstrated the substantial benefits of some CPR modalities for return of spontaneous circulation (ROSC) and survival to hospital discharge. Knowledge about these interventional modalities (chest compression, defibrillation, and pharmacological therapies) and their potential benefits can aid resuscitative efforts and improve survival. These facts mandate that all healthcare providers (HCPs), irrespective of their specialty, level of training, or work setting, be competent in initiating and performing CPR [1-3].

Knowledge of CPR among HCPs is strongly influenced by training, and it is a significant determinant of successful CPR. For that reason, routine training on CPR is required [4]. In the Kingdom of Saudi Arabia (KSA), the healthcare practice bylaw mandates that all HCPs be certified in necessary patient-care centered courses such as basic life support (BLS) [5].

Correspondence to: Abdulelah Abualfraj *Department of Emergency Medicine, Ministry of the National Guard - Health Affairs, Jeddah, Saudi Arabia. **Email:** abdulelahshafiq@gmail.com *Full list of author information is available at the end of the article.*

Received: 25 April 2021 | Accepted: 23 November 2021

OPEN ACCESS This is an open access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license: https://creativecommons.org/licenses/by/4.0/) which permits any use, Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material for any purpose, as long as the authors and the original source are properly cited. © The Author(s) 2021.

Each cardiac arrest is unique, and there are several factors to consider during resuscitation, including time, cause, and prognosis. In some cases, ROSC is the priority, such as a myocardial infarction patient who goes into ventricular fibrillation arrest, while in other cases, the prognosis is as crucial as ROSC, such as in the drowning patient brought in 30 minutes after the arrest. Life support courses teach HCPs a unified algorithmic approach to CPR, but they do not necessarily teach which interventions or medications would likely improve ROSC, neurological function, and mortality. Knowing the evidence behind each intervention and medication is crucial to raise the standard of care.

Aim

The primary objective is to assess the knowledge of HCPs working in the KSA about which CPR modalities, interventions, and medications for nontraumatic cardiac arrest have proven benefits for ROSC, return of normal neurological function (RONNF), and mortality. The secondary objectives were performing subgroup analyses and determine the relationship between certification in life support courses and the level of knowledge.

Subjects and Methods

This study is a cross-sectional study. The precise number of HCPs in KSA was not accessible, so the study statistician calculated the sample size (n = 350) using the RAOSOFT sample size calculator, assuming a 95% confidence level and 5% sampling error and 50% probability of prevalence. The study sample was a convenience sample.

The inclusion criteria were any HCPs of any age and sex who worked in the KSA. The exclusion criteria were HCPs who worked outside the KSA and those who worked in healthcare facilities but were not HCPs (such as administration, management, human resources, custodians...).

An electronic questionnaire was designed in English to evaluate HCPs' knowledge about the clinical benefits of different CPR management modalities that have been proven by evidence to improve ROSC, RONNF, and mortality. The questionnaire was reviewed and approved by a statistician and by expert researchers from the Ministry of National Guard Health Affairs (MNGHA) in Jeddah. A model answer was formulated based on the literature review to compare the responses. The Institutional Review Board of King Abdullah International Medical Research Center in MNGHA, Jeddah, approved the research proposal, questionnaire, and the model answer.

The questionnaire was distributed through SurveyMonkey and Google Forms to HCPs from different cities across the KSA.

The questionnaire included demographic data and two questions of interest (each question consisted of 8 options; each option was scored out of 1 point depending on the participant's response, and the maximum score for both questions was 16). Question 1 asked which CPR modalities and interventions were proven beneficial to ROSC, RONNF, and mortality. Question 2 asked which CPR medications were proven beneficial to ROSC, RONNF, and mortality. Based on the reviewed evidence, the correct answers were determined "Yes" to early bystander CPR, early chest compression, early defibrillation, and post-arrest hypothermia, and "No" to open airway, bag-valve-mask (BVM) ventilation, early endotracheal tube (ET) intubation, early extraglottic device (EGD) use, oxygen, epinephrine, atropine, vasopressin, lidocaine, amiodarone, dopamine, and norepinephrine.

Demographic data included sex, age, job, specialty, level of training, institute, city of practice, and state of BLS and advanced cardiac life support (ACLS) certification.

The data collected from responses were entered into Statistical Package for the Social Science (SPSS) V27 for statistical analysis. The Kolmogorov-Smirnov and Shapiro-Wilk tests were run to assess the normality of the distributions. Parametric tests were used to test for significance between categorical variables and quantitative variables. For data that did not fulfill the criteria of parametric tests, nonparametric tests (including Kruskal-Wallis and Mann-Whitney U) were used. The Chi-square test was used to compare different subgroups of the study population. A *p*-value of <0.05 was considered to be statistically significant. Both SPSS V27 and Microsoft Excel were used to produce graphs.

Results

Demographic data

A total of (448) participants have filled the questionnaire. Only 416 have met the inclusion criteria and had a response rate of 100%.

Most of the participants were males (70.7%), and the majority were aged <35 years (66.8%). The most frequently reported jobs were physician (70.9%), followed by nurse (13.2%) and Emergency medical services (EMS; emergency medical technicians, and paramedics) (11.2%). Residents and board-certified physicians (BCPs) represented 49.5% and 28.3%, respectively, of the physicians. More than half of the participants were from Jeddah (52.6%). The MNGHA and the Ministry of Health (MOH) were the most frequently reported employment sectors. A total of 58.2% of the participants worked in the critical care field (emergency medicine, pediatric emergency medicine, intensive care unit, anesthesia, burn unit, trauma surgery, cardiac catheterization, cardiology, EMS, and nurses working in these departments). 41.8% of the participants were BLS certified, while 38.5% were double certified in BLS and ACLS (Table 1).

Total score and overall level of knowledge of the study population

The level of knowledge of CPR management modalities of the participants was average in 62% (score = 60%-80%), while 22% had poor knowledge (score <60%), and 16% had good knowledge (score = 81%-100%) (Figure 1).

Table 1. Sociodemographic data of study participants (n = 416).

	Frequencies		N	%
Carr		Male	294	70.7
Sex		Female	122	29.3
4.00	<3	5 years old	278	66.8
Age	>3	5 years old	138	33.2
		BCP subgroup	84	28.3
		Non-BCP subgroup	213	71.7
	Physicians:	Junior residents (JR) subgroup	77	52.3
		Senior residents (SR) subgroup	70	47.6
Job		Total physicians count	297	70.9
		Nurses	55	13.2
		EMS	48	11.5
	Technologist	s / laboratory science	10	2.4
	0	ther HCPs	6	1.4
	Field of work	Critical care subgroup	242	58.2
		Non-critical care subgroup	174	41.8
		Riyadh	76	18.3
		Jeddah	219	52.6
City		Makkah	40	9.6
	A	l-Madinah	67	16.1
	0	ther cities	14	3.4
		МОН	155	37.3
	Nat	ional Guard	168	40.4
	Armed	Forces Hospital	22	5.3
	King Abdullal	h Medical Complexes	3	0.7
Sector of employment	King Faisal	Specialist Hospitals	8	1.9
-	Ministry of	28	6.7	
	Security For	3	0.7	
	Pri	11	2.6	
	Ot	her sectors	18	4.3
		BLS only	174	41.8
	Ą	CLS only	13	3.1
	Both E	BLS and ACLS	160	38.5
		None	69	16.6

BCP: Board-certified physicians, MOH: Ministry of Health.

The scores of HCPs in each question are shown in Table 2. Physicians ranked higher than the rest of the group in the total score on both questions, followed by technologists, other HCPs, nurses, and EMS (H = 35, p-value < 0.001) (Table 3). The correlations between different subgroups' total scores are shown in Table 4.

Question-1 CPR modalities with proven benefits in terms of ROSC, RONNF, and mortality

The level of knowledge of the participants on the individual elements of question-1 was good (>80%) on early EGD use, average (60%-80%) on early ET intubation, BVM ventilation, and early chest compression, and poor (<60%) on opening the airway, early bystander CPR, early defibrillation, and post-arrest hypothermia (Figure 2).

The majority answered this question with average scores. BCPs scored the highest, while EMS and surgical specialties scored the lowest. The scores' distribution and correlations between different subgroups in scores to Question-1 are shown in Tables 2 and 5.

Question-2 CPR medications with proven benefits in terms of ROSC, RONNF, and mortality

The level of knowledge of the participants on the individual elements of question-2 was good (>80%) on vasopressin, lidocaine, dopamine, and norepinephrine, average (60%-80%) on atropine and amiodarone. However, it was poor (<60%) on oxygen and epinephrine (Figure 3). This question was answered better with good scores. BCPs scored the highest, while nurses and

Figure 1. Level of knowledge represented by the percentage of correct answers to both questions among the study population.

Coore distribution	Questi	on-1 CPR modalities sc	ores	Question	1-2 CPR medications	scores
Score distribution	Good >80%	Average 60%-80%	Poor <60%	Good >80%	Average 60%-80%	Poor <60%
All HCPs	9.9	56	34.1	47.4	34.6	18
Physicians	11.1	59.3	29.6	53.9	34	12.1
Nurses	12.7	50.9	36.4	23.6	43.7	32.7
EMS	2.1	41.6	56.3	33.3	33.4	33.3
Tech/lab.	0	70	30	50	30	20
Life support trained	8.6	56.5	34.9	45.8	35.2	19
Single-trained (BLS or ACLS)	5.3	56.2	38.5	49.7	35.3	15
Double-trained (BLS & ACLS)	12.5	56.9	30.6	41.2	35	23.8
Not trained	15.9	53.7	30.4	55.1	31.9	13
BCP	17.9	60.7	21.4	61.9	28.6	9.5
Non-BCP	8.5	58.6	32.9	50.7	36.2	13.1
JR	7.8	54.5	37.7	49.4	35	15.6
SR	11.4	61.5	27.1	50	37.1	12.9
Critical care	14	56.7	29.3	46.3	35.5	18.2
Non-critical care	4	55.2	40.8	48.9	33.3	17.8
Medical	11.5	57	31.5	47.3	33.5	19.2
Surgical	0	50.8	49.2	47.5	41	11.5

Table 2. HCPs scores in Question-1 (CPR modalities) and Question-2 (CPR medications).

EMS scored the lowest. The distribution of scores and correlations between different subgroups in scores to Question-2 are shown in Tables 2 and 6.

Subgroup analysis (Tables 2-6)

1. Age (<35 years *vs.* >35 years) & Sex (male *vs.* female): Statistically, the older group ranked higher in knowledge

than the younger group (*p*-value = 0. 015), as did the male participants when compared to female participants (*p*-value = 0.024).

2. Life support courses certification (BLS, ACLS, or neither): Being (double or single) trained in BLS and ACLS or not trained did not significantly affect the level of knowledge.

Table 3. Kruskal-Wallis Test. Ranking of HCPs knowledge scores.

	Total	score distrib	oution	Mean	Test sta-	
Job	Good >80%	Average 60%-80%	Poor <60%	rank ^a	tistic	<i>p</i> -value
Physicians	19.5	64	16.5	229.62		
Nurses	9.1	60	30.9	162.19		
EMS	2.1	60.4	37.5	140.01	35.016 ^b	<0.001*
Technologist / laboratory science	10	60	30	188.45		
Other HCPs	16.7	33.3	50	169.00		

^a: Higher mean rank = higher scores, ^b: Test statistic adjusted for ties. *: **p**-value <0.05 indicates an unequal level of knowledge.

Table 4. Mann-Whitney U test. Ranking total scores of different subgroups.

		Το	tal score distributi	on			
Variable	Subgroup	Good >80%	Average 60%- 80%	Poor <60%	Mean rankª	Mann-Whitney U	<i>p</i> -value
Corr	Male	15.3	65.7	19	216.94	15 452 500	0.024*
Sex	Female	17.2	54.9	27.9	188.16	15,452.500	0.024
Ago	<35 years old	15.1	61.2	23.7	198.55	16 415 500	0.015*
Age	>35 years old	17.4	65.2	17.4	228.55	10,413.300	0.015
	Trained	13.8	64.3	21.9	204.65	10.627	0 127
Life support	Not trained	26.1	53.6	20.3	227.84	10,037	0.137
courses subgroups	Single trained	12.3	67.9	19.8	173.36	14 841	0 806
	Double trained	15.6	60	24.4	174.74	14,041	0.690
	Critical care	20.7	57.8	21.5	220.70	19 101	0.012*
Field of work	Non-critical care	9.2	69	21.8	191.53	10,101	0.015
subgroups	Medical specialty	18	60.9	21.1	213.25	0 141	0.049*
	Surgical specialty	3.3	72.1	24.6	180.85	9,141	0.040
	BCP	27.4	60.7	11.9	173.07	6.024	0.002*
Dhunisiana aukanaana	Non-BCP	16.4	65.3	18.3	139.51	0,924	0.002
Physicians subgroups	JR	16.9	59.7	23.4	70.01	0.007.500	0.000
	SR	24.3	58.6	17.1	78.39	2,387.500	0.226
Physicians versus	Physicians	19.5	64	16.5	185.56	E 477 E00	<0.001*
nurses	Nurses	9.1	60	30.9	127.59	5,477.500	<0.001
Dhunining up FMO	Physicians	19.5	64	16.5	183.32	4 000 500	-0.004*
Physicians versus EIVIS	EMS	2.1	60.4	37.5	109.16	4,063.500	<0.001"
Physicians versus	Physicians	19.5	64	16.5	229.62	11 200 500	<0.001*
non-physicians	Non-physicians	6.7	58.8	34.5	115.79	11,399.500	<0.001
	Nurses	9.1	60	30.9	54.95	4.450	0.070
NUISES VEISUS EIVIS	EMS	2.1	60.4	37.5	48.63	1,158	0.276
Nurses versus non-	Nurses	9.1	60	30.9	162.19	7 280 500	0.002*
nurse	Non-nurses	16.9	62.9	20.2	215.56	7,380.500	0.002"
	EMS	2.1	60.4	37.5	140.01	5 544 500	-0.004*
EMS Versus non-EMS	Non-EMS	17.7	62.7	19.6	217.43	5,544.500	<0.001"
	МОН	11	66.4	22.6	198.56	40.007.500	0.400
Health sector sub-	Non-MOH	18.8	60.1	21.1	214.40	18,687.500	0.186
groups	Military Hospitals	16.6	62.2	21.2	208.47	04 54 4	0.000
	Non-Military Hospitals	15.2	62.8	22	208.52	21,514	0.996
	Jeddah	17.4	65.2	17.4	216.88	10 705 500	0.407
Location of practice	Other cities	14.2	59.4	26.4	199.18	19,735.500	0.127
subgroups	West coast	13.9	65.5	20.6	206.32	40.170	0.424
	Other regions	23.3	51.1	25.6	216.87	13,470	0.461

^aHigher mean rank = higher scores. ***p**-value < 0.05 indicates an unequal level of knowledge.

Figure 2. Participants' responses to question 1 in percentages.

3. Critical care specialties versus non-critical care HCPs: The critical care group ranked higher in knowledge than the non-critical care group (p-value = 0.013).

4. Medical field (adult and pediatric emergency medicine, internal medicine, family medicine, pediatrics, intensive

care, burn unit, cardiology, neurology, gastroenterology, infectious diseases, dermatology, endocrinology, anesthesia, immunology, psychiatry, general radiology, others, EMS, and nurses working these departments) versus surgical field (general surgery, orthopedics,

Table 5.	Compariso	n of c	tifferen	ut subgru	t sdnu	n ques	tion I r	uodsa	ses.																
Qu	estion 1	0	Dpen air	way	Early	bystand	er CPR	Early d	chest co sion	mpres-	Ear	y defibri	llation	BVI	M ventila	ation	Early	γ ET intu	Ibation	Ea	rly EGD	nse	Post (arrest hy mia	pother-
CPR	modalities	⊢	%	٩	⊢	%	d	F	%	d	⊢	%	d	⊢	%	d	⊢	%	d	⊢	%	d	⊢	%	d
Sev	Male	140	47.6	000	162	55	0 34	218	74.1	40	131	44.6	0	231	78.6	0 37	236	80.3	σ	260	88.4	, 0	99	22.4	40
500	Female	47	38.5	0.0	61	50	1	95	77.9	t S	54	44.3	0.0	91	74.6	0.0	98	80.3	0.0	113	92.6	4.0	32	26.2	r 5
Younger	<35 years	112	40.3		150	54.0		209	75.2		119	42.8		208	74.8		223	80.2		248	89.2		64	23.0	I
versus older	>35 years	75	54.3	*/00.0	73	52.9	0.8	104	75.4	6.0	66	47.8	0.3	114	82.6	0.07	111	80.4	6.0	125	9.06	0.6	34	24.6	0.7
Life	Trained	152	43.8	0.0	190	54.8		261	75.2		151	43.5	~ ~	264	76.1	1	281	81.0		311	89.6	0	79	22.8	~ ~
support	Not trained	35	50.7	62.0	33	47.8	0.23	52	75.4	۵.۵	34	49.3	0.0	58	84.1		53	76.8	t.	62	89.9	۵. ۲	19	27.5	с. О
courses	Single	2	41.2	- -	96	51.3		130	69.5	*800 0	63	33.7	*100.07	151	80.7	*000	158	84.5	200	174	93.0	*000	31	16.6	*000
groups	Double	75	46.9	7.0	94	58.8	-	131	81.9	0,000	88	55.0	100.04	113	9.07	20.0	123	76.9	10.0	137	85.6	70.UZ	48	30.0	0.000
	Critical care	124	51.2		139	57.4		199	82.2		133	55.0		171	70.7		186	76.9		206	85.1		76	31.4	:
Field of work sub-	Non-critical care	63	36.2	0.002*	84	48.3	0.06	114	65.5	:0.001*	52	29.9	<0.001*	151	86.8	<0.001*	148	85.1	0.03*	167	96.0	<0.001*	22	12.6	:0.001*
groups	Medical	163 2 i	45.9	0.3	200	56.3	0.007*	276	77.7	0.004*	174	49.0	<0.001*	266	74.9	0.004*	283	79.7	0.4	313	88.2 ·	0.01*	93 -	26.2 2	0.002*
	Surgical	24	39.3		23	31.7	1	37	60.7	1	=	18.0		200	91.8 24 F		51	83.6		60	98.4		Ω C	8.2	
Physi- cians	Non-BCP	95 95	44.6	<0.001*	45 103	53.0 48.4	0.4	160	75.1	0.6	940	47.0 37.6	0.1	185 8	84.5 36.9	0.6	181	85.0	0.8	200	91.7 93.9	0.4	36	16.9	0.1
-qns	JR	28	36.4	* 50	47	61.0	****	59	76.6	_ ^ 0	30	39.0	- C	62 (30.5	-	64	83.1		69	89.6	-	1	14.3	, c
groups	SR	37	52.9	5.5	30	42.9	20.0	55	78.6		29	41.4		63	0.06	-	62	88.6	0.0	67	95.7	-	15	21.4	4.0
Physi-	Physicians	154	51.9		148	49.8	1	221	74.4		120	40.4		256	86.2		253	85.2		277	93.3		56	18.9	
cians versus nurses	Nurses	18	32.7	*600.0	34	61.8	0.1	46	83.6	0.1	26	47.3	0.3	34	61.8	<0.001*	38	69.1	0.004*	48	87.3	0.1	27	49.1	:0.001*
Physi-	Physicians	154	51.9		148	49.8		221	74.4		120	40.4		256	86.2		253	85.2		277	93.3		56	18.9	
cians versus EMS	EMS	10	20.8	<0.001*	33	68.8	0.01*	35	72.9	0.8	30	62.5	0.004*	52	45.8	<0.001*	31	64.6	<0.001*	35	72.9	<0.001*	12	25	0.3
Phvsi-	Physicians	154	51.9		148	49.8		221	74.4		120	40.4		256 8	86.2		253	85.2		277	93.3		56	18.9	
cians versus all	All other	33	27.7	<0.001*	75	63	0.01*	92	77.3	0.53	65	54.6	0.008*	99	55.5	<0.001*	81	68.1	<0.001*	96	80.7	<0.001*	42	35.3	:0.001*
Nurses	Nurse	18	32.7		34	61.8		46	83.6		26	47.3		34 (61.8		38	69.1		48	87.3		27	49.1	+
versus EMS	EMS	10	20.8	0.1	33	68.8	0.4	35	72.9	0.1	30	62.5	0.1	22	45.8	0.1	31	64.6	0.6	35	72.9	0.06	12	25	0.01*
Nurses	Nurse	18	32.7		34	61.8	, , ,	46	83.6		26	47.3		34 (61.8		38	69.1		48	87.3		27	49.1	
versus all	All other	169	46.8	GU.U	189	52.4	0.1	267	74.0	0.1	159	44.0	9.0	288	79.8	0.003*	296	82.0	0.02*	325	0.06	c .0	71	19.7	:0.001 [*]
EMS ver-	EMS	6	20.8		33	68.8		35	72.9		30	62.5		22	45.8		31	64.6		35	72.9		12	25	
sus all	All other	177	48.1	<0.001*	190	51.6	0.02*	278	75.5	9.0	155	42.1	0.008*	300	81.5	<0.001*	303	82.3	0.004*	338	91.8	*0.001*	86	23.4	0.8
Health sector	HOM-NoN	64 123	41.3 47.1	0.2	76 147	49.0 56.3	0.1	104 209	67.1 80.1	0.003*	59 126	38.1 48.3	0.04*	127 195	81.9 74.7	0.08	126 208	81.3 79.7	0.6	143 230	92.3 88.1	0.1	27 71	17.4 27.2	0.02*
sub- groups	Military Non-Military	88 66	45.6 44.4	0.8	110 113	57.0 50.7	0.1	163 150	84.5 67.3	:0.001*	94	47.2 42.2	0.3	138	71.5 32.5	0.007*	151 183	78.2 82.1	0.3	167 206	86.5 92.4	0.051	55 43	28.5 19.3	0.02*
Location	Jeddah Other cities	102	46.6 43.1	0.4	123 100	56.2 50.8	0.2	177 136	80.8 69.0	0.005* -	93	42.5 46.7	0.3	174	79.5	0.2	180 154	82.2 78.2	0.3	204 169	93.2 85.8	0.01*	48 50	21.9 25.4	0.4
tice sub- groups	West coast All other	148 39	44.8 45.3	6.0	171 52	51.8 60.5	0.1	245 68	74.2 79.1	0.3	137 48	41.5 55.8	0.01*	268 54	81.2 52.8	<0.001*	269 65	81.5 75.6	0.2	307 66	93.0 76.7	<0.001*	32 32	37.2	:0.001*
		1		1	1		1			1			1			1			1						

(T): True (correct) answer; (p): p-value.(*): p-value < 0.05.

Control Contro Control Control <th< th=""><th>ible 6. C</th><th>omparison of</th><th>differe</th><th>nt subgrou_l</th><th>anh ui so</th><th>211011 2 1</th><th>contract.</th><th></th><th></th><th></th><th>;</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	ible 6 . C	omparison of	differe	nt subgrou _l	anh ui so	211011 2 1	contract.				;													
Montane I K F K F K F K F K F K F K F K F K F K </th <th>Que</th> <th>stion 2</th> <th></th> <th>Oxygen</th> <th></th> <th>Epine</th> <th>phrine</th> <th></th> <th>Atropine</th> <th></th> <th>Vas</th> <th>opressin</th> <th></th> <th>Lidoc</th> <th>aine</th> <th></th> <th>Amiodaı</th> <th>one</th> <th></th> <th>Dopar</th> <th>nine</th> <th>_</th> <th>lorepine</th> <th>phrine</th>	Que	stion 2		Oxygen		Epine	phrine		Atropine		Vas	opressin		Lidoc	aine		Amiodaı	one		Dopar	nine	_	lorepine	phrine
Mate11<	сРК ш	edications	⊢	% k	L 0-	%	d	⊢	%	d	<u> </u>	d %	-	%	ď	⊢	%	ď	F	%	ď	⊢	%	d
····································	200	Male	128	43.5	, 10	14 35.4	4	232	78.9		53 8	5.1	272	2 92.5	Ċ	233	79.3	0	261	88.8	Ċ	254	86.4	ţ
WareWareKa	Xac	Female	45	36.9	36	9 32.0	c.0	89	73.0		98	0.1	113	3 92.6	0.9	96	78.7	0.0	104	85.2	c.U	98	80.3	0.1
With the price Mate is a transmert	rounger	<35 years	117	42.1	- 96	5 34.2		208	74.8		32 8:	3.5	253	3 91.0		218	78.4		241	86.7	0	232	83.5	0
UnderImage	versus older	>35 years	56	40.6	46	3 34.8	6.0	113	81.9	0.1 L	19 8	5.2 0.4	132	2 95.7	0.08	111	80.4	9.0	124	89.9	0.3	120	87.0	0.3
Term for the section of a consist of a	Life	Trained	141	40.6	11	9 34.3		262	75.5	2 20 0	88	3.0	32,	92.5		273	78.7	4	303	87.3	ц С	290	83.6	
MomeMomeMomeMomeMom <t< td=""><td>support</td><td>Not trained</td><td>32</td><td>46.4 ^U</td><td>3 24</td><td>4 34.8</td><td>8.0 </td><td>59</td><td>85.5</td><td>1.07</td><td>33 9</td><td>1.3 0.02</td><td>64</td><td>92.8</td><td>P.0</td><td>56</td><td>81.2</td><td>0.0</td><td>62</td><td>89.9</td><td>c.U</td><td>62</td><td>89.9</td><td>0.1</td></t<>	support	Not trained	32	46.4 ^U	3 24	4 34.8	8.0 	59	85.5	1.07	33 9	1.3 0.02	64	92.8	P.0	56	81.2	0.0	62	89.9	c.U	62	89.9	0.1
Image	courses	Single	73	39.0	л 81	1 43.3	<0.001*	137	73.3	-	65 8	3.2	173	3 92.5		160	85.6	*0002	162	86.6	9	161	86.1	C 7
Hut (with 	groups	Double	68	42.5	36	3 23.8	00.04	125	78.1	1	23 7	9.9	148	3 92.5	6.0	113	70.6	-00.04	141	88.1	0.0	129	80.6	0
TendedMarketMarke		Critical care	113	46.7	39	9 28.5		195	80.6		04	4.3	219	90.5		181	74.8		214	88.4	0	204	84.3	0
MericalMerical164110111311011131 <td>Field of work sub-</td> <td>non-critical care</td> <td>60</td> <td>34.5 0.0</td> <td>11* 74</td> <td>4 42.5</td> <td>0.003*</td> <td>126</td> <td>72.4</td> <td>0.05</td> <td>47 8</td> <td>4.5 0.9</td> <td>166</td> <td>95.4</td> <td>0.06</td> <td>148</td> <td>85.1</td> <td>0.01*</td> <td>151</td> <td>86.8</td> <td>9.0</td> <td>148</td> <td>85.1</td> <td>0.8</td>	Field of work sub-	non-critical care	60	34.5 0.0	11* 74	4 42.5	0.003*	126	72.4	0.05	47 8	4.5 0.9	166	95.4	0.06	148	85.1	0.01*	151	86.8	9.0	148	85.1	0.8
NormetrySurgeries1233333433440666 <td>groups</td> <td>Medical</td> <td>155</td> <td>43.7</td> <td>11.</td> <td>4 32.1</td> <td>*</td> <td>273</td> <td>76.9</td> <td>2</td> <td>99 8.</td> <td>4.2</td> <td>325</td> <td>5 91.5</td> <td>е С</td> <td>272</td> <td>76.6</td> <td>*****</td> <td>312</td> <td>87.9</td> <td>a c</td> <td>299</td> <td>84.2</td> <td>4</td>	groups	Medical	155	43.7	11.	4 32.1	*	273	76.9	2	99 8.	4.2	325	5 91.5	е С	272	76.6	*****	312	87.9	a c	299	84.2	4
Prive tickPrice tick100 <td></td> <td>Surgical</td> <td>18</td> <td>29.5</td> <td>26</td> <td>9 47.5</td> <td>0.0</td> <td>48</td> <td>78.7</td> <td><u>ع</u></td> <td>51 8</td> <td>4.4 0.0</td> <td>60</td> <td>98.4</td> <td>0.0</td> <td>57</td> <td>93.4</td> <td>0.00</td> <td>53</td> <td>86.9</td> <td>0.0</td> <td>53</td> <td>86.9</td> <td>c.0</td>		Surgical	18	29.5	26	9 47.5	0.0	48	78.7	<u>ع</u>	51 8	4.4 0.0	60	98.4	0.0	57	93.4	0.00	53	86.9	0.0	53	86.9	c.0
visite visite bMonetice iMon iMon iMon iMon 	Physi-	BCP	47	56.0	36	5 41.7	4	71	84.5		47	8.1	80	95.2	c	72	85.7	u c	62	94.0	Ċ	75	89.3	c
910.11<	cians	Non-BCP	06	42.3	8	1 38.0	0.0	171	80.3	c.0	90 8	9.2	202	t 95.8	0.0	176	82.6	C.O	192	90.1	7.N	189	88.7	0.0
Pyrolic by	-qns	ЛL	34	44.2	د 2	9 37.7	4	59	76.6		8	3.3	72	93.5	4	65	84.4	10	67	87.0	L C	65	84.4	Č
Physical base Physical	groups	SR	28	40.0	30	0 42.9	C.D	57	81.4	4	33 9	0.0	67	95.7	C.U	58	82.9		63	90.0	0.0	64	91.4	0
weres weres weresNurse1250004'712/10001'3100101310010131031011013103101 </td <td>Physi-</td> <td>Physicians</td> <td>137</td> <td>46.1</td> <td>11(</td> <td>6 39.1</td> <td> </td> <td>242</td> <td>81.5</td> <td></td> <td>64 8</td> <td>8.9</td> <td>284</td> <td>t 95.6</td> <td></td> <td>248</td> <td>83.5</td> <td></td> <td>271</td> <td>91.2</td> <td></td> <td>264</td> <td>88.9</td> <td></td>	Physi-	Physicians	137	46.1	11(6 39.1	 	242	81.5		64 8	8.9	284	t 95.6		248	83.5		271	91.2		264	88.9	
Physical 131 41 14 301 22 815 246 856 247 815 247 812 246 816 35 243 35 243 35 243 35 25 35 25 35<	cians versus nurses	Nurses	14	25.5 0.0	04* 7	12.7	<0.001*	39	70.9	0.07	t0	2.7 0.00	1*	89.1	0.049*	40	72.7	0.057	48	87.3	0.3	41	74.5	0.004*
Unitability bility bility bility bility bility bility bility bility bility bility bility bility bility bility bility 	Physi-	Physicians	137	46.1	11	6 39.1		242	81.5		64 8	3.9	284	t 95.6		248	83.5		271	91.2		264	88.9	
Physicans13461301461301461301461301461301461301461301461301461301461301461301461301461301461301461301	cians versus EMS	EMS	16	33.3 0.1	12	2 25.0	0.06	33	68.8	0.04*	35 7.	2.9 0.000	39	81.3	<0.001*	29	60.4	<0.001*	35	72.9	<0.001*	35	72.9	0.003*
versite allMarchine all50.003*272.003*20.003*220.003*520.003*570.003*570.003*570.003*570.003*570.003*570.003*570.003*570.003*570.003*570.003*570.003*570.003*570.003*570.003*40.003*0.003*0.004*60.003*0.004*60.003*0.004*60.004*	Physi-	Physicians	137	46.1	11	6 39.1		242	81.5	14	64 8	3.9	284	t 95.6		248	83.5		271	91.2		264	88.9	
Nurse Nurse 1 25 7 127 0.0 40 7.1 40 7.1 40 7.1 41 7.1 41 7.1	cians versus all	All other	36	30.3 0.0	03* 27	7 22.7	0.001*	79	66.4	.001*	37 7:	3.1 <0.00	10,	84.9	<0.001*	81	68.1	<0.001*	94	0.67	<0.001*	88	73.9	<0.001*
Versus bursus EMS 16 3.3 0.3 12 5.0 0.1 33 6.8.8 0.3 12 0.1 33 6.8.8 0.3 13 13 13 13 13 13 13 13 14 13 16 11 11 11 11 14 14 12 16 131 16 131 16 131 16 131 16 131 16 131 16 131 16 131 16 131 16 131 16 131 16 131 131 16 131 131 131	Nurses	Nurse	14	25.5	2	. 12.7		39	70.9		2 Ot	2.7	49	89.1	0	40	72.7		48	87.3	000	41	74.5	0
Nurse Nurse 14 255 127 127 126 127<	versus EMS	EMS	16	33.3 ^{U.}	12	2 25.0	0.1	33	68.8	8.0	35 7:	2.9 0.9	39	81.3	0.2	29	60.4	1.0	35	72.9	0.00	35	72.9	0.8
Value value value value value154.00.00152.00.00150.0015178.10.0015178.10.0015178.10.0015178.10.0015178.10.0015178.10.0015178.10.0015178.10.0015178.10.0015178.10.0015178.10.0015178.10.0015178.10.0015178.10.0015178.10.0015178.10.0015178.10.0015178.10.001516178.10.0015151716151716151716151715171517151716151716151716151716151716161516<	Nurses	Nurse	4	25.5	2	12.7	******	39	70.9		2 0†	2.7	49	89.1		40	72.7		48	87.3	c c	41	74.5	
EMS vel to sub letEMS vel a let1033.1225.00.133.68.80.135.60.135.60.135.60.135.736.1 <td>versus all</td> <td>All other</td> <td>159</td> <td>44.0 0.0</td> <td>13</td> <td>16 37.7</td> <td>- I.OO.O></td> <td>282</td> <td>78.1</td> <td>e) N.O</td> <td>11 8</td> <td>3.1 0.01</td> <td>336</td> <td>93.1</td> <td>0.2</td> <td>289</td> <td>80.1</td> <td>0.Z</td> <td>317</td> <td>87.8</td> <td>0.9</td> <td>311</td> <td>86.1</td> <td></td>	versus all	All other	159	44.0 0.0	13	16 37.7	- I.OO.O>	282	78.1	e) N.O	11 8	3.1 0.01	336	93.1	0.2	289	80.1	0.Z	317	87.8	0.9	311	86.1	
Number 10 42.1 35.0 10.1 45.1 55.1 55.1 55.1 55.1 56.1 <t< td=""><td>EMS ver-</td><td>EMS</td><td>16</td><td>33.3 10.7</td><td>2</td><td>2 25.0</td><td>0.1</td><td>33</td><td>68.8</td><td>0.1 1.0</td><td>35 7</td><td>0.02</td><td>39</td><td>81.3</td><td>0.002*</td><td>29</td><td>60.4 24 r</td><td><0.001*</td><td>35</td><td>72.9</td><td><0.001*</td><td>35</td><td>72.9</td><td>0.01*</td></t<>	EMS ver-	EMS	16	33.3 10.7	2	2 25.0	0.1	33	68.8	0.1 1.0	35 7	0.02	39	81.3	0.002*	29	60.4 24 r	<0.001*	35	72.9	<0.001*	35	72.9	0.01*
Health Month 30 30.1 71.1 71.0 32.1 01.2 <	ono all		/ GL	42.1	5 5 6	0.05 10		288	74.6	·) 、	0 0 0 0	р. с и	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.4.0		300	01.5 01.5		33U	89.7		317	80.1 21 6	
sub- groups Military Non-Military 80 41.5 0.9 55 28.5 0.01* 161 83.4 0.6 178 92.2 0.8 146 75.6 0.1 171 88.6 0.6 153 79.3 groups Non-Military 93 41.7 72.6 0.01* 190 85.2 0.6 183 82.1 0.6 199 89.2 0.05* 193 89.2 0.05* 194 87.0 0.6 199 89.2 0.00* 106 10 81.2 0.00* 100 81.2 0.00* 101 81.2 0.00* 102 82.1 100 102 100 80.2 100 102 100 1	Health Sector	HOM-noN	oc 117	30.1 44.8 0.(80	30.7	0.03*	210	80.5	.03*	8 0 50 -	+.0 4.3 0.9	24,	+ 92.3	0.8	203	6.10 77.8	0.3	229	87.7	0.99	210	91.0 80.5	0.002*
Proubs Non-Military 93 4.7. $\overline{\sqrt{3}}$ 88 39.5 $\overline{\sqrt{3}}$ 161 7.2. $\overline{\sqrt{3}}$ 190 89.2. $\overline{\sqrt{3}}$ 183 81.7. $\overline{\sqrt{3}}$ 199 89.2. $\overline{\sqrt{3}}$ 199 89.2. $\overline{\sqrt{3}}$ 183 81.7. $\overline{\sqrt{3}}$ 199 89.2. $\overline{\sqrt{3}}$ 198 90.4. 198 90.4. 197 89.4. $\overline{\sqrt{3}}$ 188 133.3. 160 81.2. $\overline{\sqrt{3}}$ 187 177 89.8 0.04^{+} 147 74.6 0.03^{+} 167 84.8 0.08^{-} 167 84.8 0.8^{-} 0.8^{-} 0.8^{-} 0.9^{+} 147 74.6 0.03^{+} 167 84.8 0.8^{-}	-qns	Military	80	41.5	۰ 55	5 28.5		160	82.9	*000	61 8	3.4 0.6	178	3 92.2	¢	146	75.6	- -	171	88.6	е С	153	79.3	0 005*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	groups	Non-Military	93	41.7	28 38	3 39.5		161	72.2		90 8	5.2	207	7 92.8	2 2	183	82.1	-	194	87.0	2.2	199	89.2	0.00
Under other cities 89 45.2 70 35.5 72.6 72.6 760 81.2 77 89.8 74.6 74.6 74.8 <td>Loca-</td> <td>Jeddah</td> <td>84</td> <td>38.4</td> <td>1</td> <td>3 33.3</td> <td>90</td> <td>178</td> <td>81.3</td> <td>103*</td> <td>91</td> <td>7.2</td> <td>208</td> <td>3 95.0</td> <td>0 04*</td> <td>182</td> <td>83.1</td> <td>0.03*</td> <td>198</td> <td>90.4</td> <td>0.08</td> <td>198</td> <td>90.4</td> <td>80</td>	Loca-	Jeddah	84	38.4	1	3 33.3	90	178	81.3	103*	91	7.2	208	3 95.0	0 04*	182	83.1	0.03*	198	90.4	0.08	198	90.4	80
bub- West coast 128 38.8 0.02* 112 33.9 0.7 554 77.0 0.8 280 84.8 0.6 309 93.6 0.09 264 80.0 0.3 293 88.8 0.2 284 86.1 0.1 0.1 0.1 0.1 0.1 0.0 0.3 11 36.0 0.2 68 79.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	practice	Other cities	89	45.2	26	0 35.5	2	143	72.6	2	60 8	1.2	177	7 89.8	- 	147	74.6	2	167	84.8	0	167	84.8	2
groups All other 42 52.3 [31 30.4] 4 [31] 30.4] [1 32] 1 1 22.5] [1 1 52.0] 1 1 1 22.5] 2 1 2 1 20.7	-qns	West coast	128 4E	38.8)2* 	2 33.9	0.7	254	77.0	0.8	2 80 2 80	1.8 0.6	306	93.6	0.09	264	80.0 75 S	0.3	293	88.8	0.2	284	70.1	0.1
	groups	All other	45	52.3	, N	1 36.0		9/9	6.17		20	5.6	9/	88.4		69	9.¢/		7.7	83.7		68	/9.1	

otorhinolaryngology, ophthalmology, urology, neurosurgery, obstetrics and gynecology, plastic surgery, cardiac surgery, trauma surgery): The medical specialty group ranked higher in knowledge than the surgical specialty group (p-value = 0.048).

5. BCP (assistant, associate, full consultants, and fellows) versus non-BCP (staff physicians and residents): The BCP group ranked higher in knowledge than the non-BCP group (p-value = 0.002).

6. Residents (JR; Junior residents vs. SR; Senior residents): Both ranked roughly the same in knowledge without significant differences.

7. Physicians versus others: Physicians ranked higher in knowledge than nurses, EMS, and non-physician subgroups (p-value < 0.001).

8. Nurses & EMS: Both groups ranked similarly without significant differences. Nurses and EMS ranked much lower in knowledge when compared to non-nurses and non-EMS (p-value = 0.002, p-value < 0.001, respectively).

9. Sector and city of practice: Neither has shown a significant effect on the level of knowledge.

Discussion

Many studies have addressed the benefits of different CPR interventional modalities in achieving ROSC, survival to hospital admission, and discharge with good neurological outcome.

Early bystander CPR, early chest compressions, early defibrillation, and post-ROSC therapeutic hypothermia are CPR interventions proven by evidence to improve ROSC, RONNF, and mortality [1,6-10].

None of the airway maneuvers, including opening the airway, BVM, ET intubation or EGD, or any of the medications used, or recommended, during cardiac arrest, has significantly impacted ROSC, RONNF, and mortality [11-17].

Oxygen was not studied by any randomized clinical trial, which is understandable because of ethical implications. Nevertheless, none of the studies has specifically mentioned its effect on ROSC or RONNF in cardiac arrest [12]. Epinephrine has been studied extensively and has been shown to improve ROSC, but none of these studies have documented improved RONNF. The PARAMEDIC2 trial showed increased 30-day survival among the epinephrine group, but this group had severe neurological morbidity compared to the placebo group [11,13-14]. Vasopressin was not superior to epinephrine, and there are no available data comparing vasopressin to placebo in cardiac arrest [12]. Atropine was removed from the cardiac arrest guidelines in 2010 due to a lack of clear evidence of benefits [11]. Amiodarone has improved ROSC in ventricular fibrillation and pulseless ventricular tachycardia arrest but does not improve RONNF. Lidocaine also increased ROSC in shock-resistant ventricular fibrillation and pulseless ventricular tachycardia arrest but had no significant effect on RONNF [15]. Dopamine is reserved until after ROSC, and there is no sufficient evidence recommending norepinephrine use during cardiac arrest [16,17]. To the best of our knowledge, this is the first study in the KSA to evaluate healthcare providers' knowledge of the clinical benefits of the different CPR management modalities from an evidence-based point of view.

This study showed that 60% of HCPs in the KSA had an average (score 60%-80%) level of knowledge about different CPR management modalities, which might be explained by a lack of literature review by HCPs or simply because the evidence behind CPR is enormous and not formally taught in life support courses or healthcare schools. Although this study used a different method to assess the levels of knowledge, what we found was similar to what was reported in other studies done in the KSA among students and HCPs. Our study has reported a level of knowledge that was higher than those levels reported in studies that took place in Asia, Europe, and Africa [4,18-25]. Physicians are expected to be knowledgeable about CPR benefits since they are considered by default to be responsible for patients' lives. Indeed, the study findings showed that their level of knowledge was significantly higher than that of other HCPs, which was consistent with other studies [19,22-24]. BCPs scored the highest among all HCPs, which is expected since one would expect consultants to be better trained and more knowledgeable. The levels of knowledge between senior and junior residents did not show a significant difference which was not expected as senior residents should have more experience and knowledge than junior residents. A possible explanation is that senior residents are not practicing independently from consultants, which could have a negative impact on their performance. However, this finding was consistent with a study done in Pakistan [22]. Male participants had better knowledge scores than females, which is in line with Saquib et al.'s [19] findings but against Nambiar et al.'s [4] findings. The low number of females in this study could have biased these results. Participants aged >35 years had a better level of knowledge than younger participants, which could be because they are older, wiser, expert, and knowledgeable, these findings are consistent with other studies [23-25]. Those who worked in the critical care field and those with medical specialties (nonsurgical) scored better than their counterparts. HCPs working in medical specialties are expected to be better since they are more likely to encounter sicker patients [21]. Surprisingly, being certified in any life support courses was not associated with a better level of knowledge. This finding could be explained by the fact that these courses provide the participants with sufficient knowledge and skills to participate in or lead CPR rather than teaching the evidence behind each CPR management modality which needs to be sought out individually. However, this finding is consistent with a study by Nambiar et al. [4] but inconsistent with the findings of other studies [19-27]. EMS and nurses unexpectedly scored the lowest among all participants. EMS scored very low on both questions (interventions and medications),

while nurses scored better in question-1 but scored the lowest on medications (Table 2). EMS and nurses are usually at the frontline and have the first contact with patients either in the field or in hospitals. Both are expected to match the physicians' knowledge of CPR management modalities, and medications since resuscitation teams usually comprise EMS, nurses, and physicians. These findings could be due to chance; however, other studies reported conflicting results about nurses' level of knowledge [4,19-25]. On the other hand, poor knowledge of EMS about CPR has been reported by other studies [25,28].

In this study, neither the employment sector nor the city of practice impacted HCPs' level of knowledge which was expected.

Conclusion

Resuscitating a dying patient is an art. It is mastered through frequent deliberate practice, supervised training, reading, and experience. It is paramount that resuscitationists orient themselves with the evidence behind each intervention and medication, which allows them to prioritize critical actions. Additionally, it is essential to consider the benefits that the patients would get, the values and preferences of the patients and their families, the prognosis and the irreversible neurological sequelae that would be inflicted on the patient and put a burden on resources, intensive care unit occupancy and the health care system.

The primary outcome of our study showed that the level of knowledge of HCPs about different CPR interventions and medications in the KSA is average, with a score below expectations. Secondary outcomes showed that being older than 35 years of age, working in the critical care field, or working as a physician (specially BCPs) was associated with a higher level of knowledge while being a nurse or EMS was associated with a lower level of knowledge. Another interesting finding in the secondary outcomes is that being certified in life support courses was not associated with a better knowledge of CPR.

Recommendations

Encourage evidence review and establish hospital-based educational programs such as periodic seminars, journal clubs or debates targeting all HCPs aiming for better knowledge and raising the standard of care.

Consider adding sessions to life support courses that teach which CPR management modalities have better outcomes for patients.

Emphasize ACLS and BLS training and recertification.

The authors would like to invite other researchers who are interested in replicating this study to do so to understand the situation better.

Limitations

This study has several limitations. For instance, this cross-sectional study can show associations only, and these observations can change over time or be attributed

to chance. In addition, the sampling technique was nonprobability convenience sampling, which may have biased the results and make the findings not generalizable to all HCPs in the KSA. Another limitation faced during the literature review was that no similar studies had assessed healthcare providers' knowledge of different CPR modalities from an evidence-based point of view. Finally, during the submission process of this article, a new study was published on June 17, 2021: The Targeted Temperature Management-2 trial showed that post-arrest hypothermia has no benefit on mortality or neurological outcome, although, till the publication of this study, it was not removed from the cardiac arrest guidelines [29].

Acknowledgments

Statistical advice from Dr. Faisal Boker. Department of Emergency Medicine, Ministry of the National Guard - Health Affairs, Jeddah, Saudi Arabia

List of Abbreviations

ACLS	Advanced cardiac life support
BCP	Board-certified physicians
BLS	Basic life support
BVM	Bag-valve-mask
CPR	Cardiopulmonary resuscitation
EGD	Extra-glottic device
EMS	Emergency medical services
ET	Endotracheal tube
HCP	Health care provider
JR	Junior Residents
KSA	Kingdom of Saudi Arabia
MNGHA	Ministry of National Guard Health Affairs
MOH	Ministry of Health
RONNF	Return of normal neurological function
ROSC	Return of spontaneous circulation
SPSS	Statistical Package for the Social Science
SR	Senior residents
VS.	Versus

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Funding

None.

Consent to participate

Written informed consent was obtained from all the participants.

Ethical approval

Ethical approval was granted by KAIMRC-IRB via Letter Number: IRBC/0641/21, Study Number: NRJ21J/039/02, Dated: March 18, 2021.

Author details

Abdulelah Abualfraj^{1,2,3,} Ahmed Halawani⁴, Ali Alshehri^{1,2,3,5,} Reema Hakim^{2,3,6,7,} Anas Hamam⁸

- 1. Department of Emergency Medicine, Ministry of the National Guard Health Affairs, Jeddah, Saudi Arabia
- 2. King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- 3. King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia

- 4. Emergency Medicine Assistant Consultant, King Fahd General Hospital, Ministry of Health, Al-Madinah, Saudi Arabia
- 5. Emergency Medicine Consultant, King Abdulaziz Medical City, Jeddah, Saudi Arabia
- 6. Department of Family Medicine and Primary Health Care-WR, Ministry of the National Guard - Health Affairs, Jeddah, Saudi Arabia
- 7. Family Medicine Consultant, King Abdulaziz Medical City, Bahara-PHC, Jeddah, Saudi Arabia
- 8. Emergency Medicine Consultant, King Fahd Armed Forces Hospital, Ministry of Defense, Jeddah, Saudi Arabia

References

- 1. Yan S, Gan Y, Jiang N, Wang R, Chen Y, Luo Z, et al. The global survival rate among adult out-of-hospital cardiac arrest patients who received cardiopulmonary resuscitation: a systematic review and meta-analysis. Crit Care. 2020;24:61. https://doi.org/10.1186/s13054-020-2773-2
- Zaheer H, Haque Z. Awareness about BLS (CPR) among medical students: status and requirements. J Pak Med Assoc. 2009;59(1):57–9. PMID: 19213385. Available from: https://pubmed.ncbi.nlm.nih.gov/19213385
- Steen PA, Kramer-Johansen J. Improving cardiopulmonary resuscitation quality to ensure survival. Curr Opin Crit Care. 2008;14(3):299–304. https://doi.org/10.1097/ mcc.0b013e3282f827d3
- Nambiar M, Nedungalaparambil NM, Aslesh OP. Is current training in basic and advanced cardiac life support (BLS & ACLS) effective? A study of BLS & ACLS knowledge amongst healthcare professionals of North-Kerala. World J Emerg Med. 2016;7(4):263–9. PMID: 27942342; PMCID: PMC5143309. https://doi.org/10.5847/ wjem.j.1920-8642.2016.04.004
- Royal decree: healthcare profession practice bylaw [Internet]. Available from: https://laws.boe.gov.sa/ BoeLaws/Laws/LawDetails/f1de206c-eef4-4a76-904aa9a700f2899a/1
- Lee J, Lee W, Lee YJ, Sim H, Lee WK. Effectiveness of bystander cardiopulmonary resuscitation in improving the survival and neurological recovery of patients with out-ofhospital cardiac arrest: a nationwide patient cohort study. PLoS One. 2020;15(12):e0243757. PMID: 33326454; PMCID: PMC7744051. https://doi.org/10.1371/journal. pone.0243757
- Buick JE, Drennan IR, Scales DC, Brooks SC, Byers A, Cheskes S, et al. Improving temporal trends in survival and neurological outcomes after out-of-hospital cardiac arrest. Circ Cardiovasc Qual Outcomes. 2018;11(1):e003561. PMID: 29317455; PMCID: PMC5791528. https://doi. org/10.1161/CIRCOUTCOMES.117.003561
- Hasselqvist-Ax I, Riva G, Herlitz J, Rosenqvist M, Hollenberg J, Nordberg P, et al. Early cardiopulmonary resuscitation in out-of-hospital cardiac arrest. N Engl J Med. 2015;372(24):2307–15. https://doi/10.1056/ NEJMoa1405796
- Cummins RO, Eisenberg MS, Hallstrom AP, Litwin PE. Survival of out-of-hospital cardiac arrest with early initiation of cardiopulmonary resuscitation. Am J Emerg Med [Internet]. 1985;3(2):114–9. https://doi. org/10.1016/0735-6757(85)90032-4
- Hermel M, Bosson N, Fang A, French WJ, Niemann JT, Sung G, et al. Implementation of targeted temperature management after out-of-hospital cardiac arrest:

observations from the Los Angeles county regional system. J Am Heart Assoc. 2020;9(24):e016652. https://doi.org/10.1161/JAHA.120.016652

- Panchal AR, Berg KM, Hirsch KG, Kudenchuk PJ, Del Rios M, Cabanãs JG, et al. 2019 American Heart Association focused update on advanced cardiovascular life support: use of advanced airways, vasopressors, and extracorporeal cardiopulmonary resuscitation during cardiac arrest: an update to the American Heart Association Guidelines f. Circulation. 2019;140(24):E881– 94. https://doi.org/10.1161/CIR.00000000000732
- Neumar RW, Otto CW, Link MS, Kronick SL, Shuster M, Callaway CW, et al. Part 8: adult advanced cardiovascular life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency CardiovascularCare.Circulation.2010;122(18Suppl3):S729– 67. https://doi.org/10.1161/CIRCULATIONAHA.110.970988
- Perkins GD, Ji C, Deakin CD, Quinn T, Nolan JP, Scomparin C, et al. A randomized trial of epinephrine in out-ofhospital cardiac arrest.N Engl J Med. 2018379(8):711–21. https://doi.org/10.1056/NEJMoa1806842
- Lundin A, Djärv T, Engdahl J, Hollenberg J, Nordberg P, Ravn-Fischer A, et al. Drug therapy in cardiac arrest: a review of the literature. Eur Heart J Cardiovasc Pharmacother. 2016;2(1):54–75. Epub 2015 November 26th. PMID: 27533062. https://doi.org/10.1093/ehjcvp/pvv047
- 15. Panchal AR, Berg KM, Kudenchuk PJ, Del Rios M, Hirsch KG, Link MS, et al. 2018 American Heart Association focused update on advanced cardiovascular life support use of antiarrhythmic drugs during and immediately after cardiac arrest: an update to the American Heart Association Guidelines for cardiopulmonary resuscitation and Em. Circulation. 2018;138(23):e740–9. https://doi. org/10.1161/CIR.00000000000613
- European Resuscitation Council. Part 6: advanced cardiovascular life support: section 6: pharmacology ii: agents to optimize cardiac output and blood pressure. Circulation [Internet]. 2000 [cited 2021 Jul 8];102(suppl_1). Available from: https://www. ahajournals.org/doi/10.1161/circ.102.suppl_1.l-129; https://doi.org/10.1161/circ.102.suppl_1.l-129
- Callaham M, Madsen CD, Barton CW, Saunders CE, Pointer J. A randomized clinical trial of high-dose epinephrine and norepinephrine vs. standard-dose epinephrine in prehospital cardiac arrest. JAMA. 1992;268(19):2667–72. https://doi.org/10.1001/jama.1992.03490190067033
- Nasyam FA, Alenazi A, Alqahtani M, Alqhtani N, Mohammed A. Awareness of basic life support and emergency medical services among health care students and professionals in the Medical University - Saudi Arabia. Med Sci [Internet]. 2020 [cited 2021 Jul 8];24(103):1307– 13. Available from: https://discoveryjournals.org/ medicalscience/current_issue/v24/n103/A43.htm
- Saquib SA, Al-Harthi HM, Khoshhal AA, Shaher AA, Al-Shammari AB, Khan A, et al. Knowledge and attitude about basic life support and emergency medical services amongst healthcare interns in university hospitals: a cross-sectional study. Emerg Med Int. 2019;2019:1–8. https://doi.org/10.1155/2019/9342892
- Khader K, Al-Ghamdi AN, Youssef HAM, Elryah AAI, Ayasreh IR, Al-Mawajdeh NA, et al. Awareness and knowledge of health-college students of cardiopulmonary resuscitation at Taif university, Saudi Arabia. Int J Multidisciplin Curr Res [Internet]. 2016

[cited 2021 July 8];4. Available from: https://www. semanticscholar.org/paper/Awareness-and-Knowledgeof-Health-College-Students-Khader-Al-Ghamdi/ a290cab78523a0ad33ad91692205c1c0981a0f17

- Silverplats J, Södersved Källestedt ML, Wagner P, Ravn-Fischer A, Äng B, Strömsöe A. Theoretical knowledge and self-assessed ability to perform cardiopulmonary resuscitation: a survey among 3044 healthcare professionals in Sweden. Eur J Emerg Med. 2020;27(5):368– 72. https://doi.org/10.1097/MEJ.000000000000692
- 22. Irfan B, Zahid I, Khan MS, Khan OAA, Zaidi S, Awan S, et al. Current state of knowledge of basic life support in health professionals of the largest city in Pakistan: a crosssectional study. BMC Health Serv Res. 2019;19(1):865. https://doi.org/10.1186/s12913-019-4676-y
- Kaihula WT, Sawe HR, Runyon MS, Murray BL. Assessment of cardiopulmonary resuscitation knowledge and skills among healthcare providers at an urban tertiary referral hospital in Tanzania. BMC Health Serv Res. 2018;18(1):935. https://doi.org/10.1186/s12913-018-3725-2
- Passali C, Pantazopoulos I, Dontas I, Patsaki A, Barouxis D, Troupis G, et al. Evaluation of nurses' and doctors' knowledge of basic & advanced life support resuscitation guidelines. Nurse Educ Pract. 2011;11(6):365–9. https:// doi.org/10.1016/j.nepr.2011.03.010

- 25. Roshana S, Batajoo KH, Piryani RM, Sharma MW. Basic life support: knowledge and attitude of medical/paramedical professionals. World J Emerg Med. 2012;3(2):141–5. https:// dx.doi.org/10.5847%2Fwjem.j.issn.1920-8642.2012.02.011
- 26. Mohammed Z, Arafa A, Saleh Y, Dardir M, Taha A, Shaban H, et al. Knowledge of and attitudes towards cardiopulmonary resuscitation among junior doctors and medical students in Upper Egypt: cross-sectional study. Int J Emerg Med. 2020;13(1):19. https://doi.org/10.1186/ s12245-020-00277-x
- Abbas A, Bukhari SI, Ahmad F. Knowledge of first aid and basic life support amongst medical students: a comparison between trained and un-trained students. JPMA J Pak Med Assoc [Internet]. 2011 [cited 2021 Jul 8];61(6):613–6. Available from: https://jpma.org.pk/ article-details/2839?article_id=2839
- Papi M, Hakim A, Bahrami H. Relationship between knowledge and skill for basic life support in personnel of emergency medical services, Islamic Republic of Iran. East Mediterr Health J. 2020;26(10):1193–9. https://doi. org/10.26719/emhj.19.018
- Dankiewicz J, Cronberg T, Lilja G, Jakobsen JC, Levin H, Ullén S, et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med [Internet]. 2021 [cited 2021 Jul 8];384(24):2283–94. https://doi. org/10.1056/NEJMoa2100591